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The cooperativity length in models for the glass transition

Dirk Sappelt and Josef Jackle
University of Konstanz, Fakultit fiir Physik, D-78434 Konstanz, Federal Republic of Germany

Received 18 May 1993

Abstract, Kinetic Ising and lattice-gas modeis with kinetic constraints may serve as models
of cooperative dynamics in undercooled liquids near the glass transition. For a class of these
models the cooperativity length of a spin/particle is defined and its distribution calculated. 1t is
found that, contrary to an assumption of Adam and Gibbs, there is no simple relation between the
cooperativity length and the entropy of these models, For the autocorrelation functions, which
exhibit a siretched-exponential time dependence, an approximate sum formula is proposed which
contains a relaxation rate depending on cooperativity length. The sum formula is tested for a
particular case and found to give good overall agreement with Monte Carlo data.

1. Introduction

in the discussion of the physical mechanisim of the enormous slowing down of the diffusive
molecular motion in an undercooled liquid near the glass transition the idea of molecules
rearranging themselves cooperatively within regions of a characteristic size [1] has been
found to be very aftractive. The idea had been made quantitative by relating the size of
a “cooperatively rearranging region’ 1o its content of configurational entropy [1]. During
the last decade a class of kinetic Ising and lattice-gas models with Kinetic constraints were
investigated 2-91 which give the idea of cooperativity a concrete meaning. It is the purpose
of the present paper to define and calculate the characteristic length of the cooperative
process for different models and to relate this length to measurable physical quantities.
The paper is organized as follows. In section 2.1 the cooperativity length of the models
is defined according to our intuitive understanding of the term ‘cooperative’. Alternative
definitions of a characteristic length, which use periodic boundary conditions, are listed
for comparison. The results for the probability distribution of the cooperativity length are
presented in sections 2.2-2.5. The models investigated are: the (3,2)-Cayley-tree model,
the north—east (NE) model, the two-spin facilitated kinetic Ising model and the hard-square
lattice-gas model. The first two of these models, which have a directed constraint, exhibit
a sharp blocking transition at a critical up-spin conceniration. In section 3 an approximate
sum formula for the autocorrelation function of the models is proposed, which contains a
relaxation rate depending on the cooperativity Jength. The validity of the sum formula is
tested for the NE model in section 3.3, The results of the paper are summarized in section 4.

2. Distribution of cooperativity lengths

2.1, Definitions

We first define the cooperativity length / for the two-spin facilitated kinetic Ising model.
This definifion can be extended to all kinetic Ising models with a kinetic constraint. A
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similar definition applies to lattice-gas models with constrained diffusion dynamics. In the
two-spin facilitated kinetic Ising model the lattice sites are occupied by spins which are in
the up state with probability c, and in the down state with probability 1 — ¢, There is no
static interaction between the spins. The kinetic constraint allows a spin to flip (in either
direction) only if at least two of its four nearest neighbours, no matter which, point in the
up direction. We call a spin ‘fippable’ or ‘blocked’ depending on whether it {s allowed to
flip or not. A spin which is initially blocked may be ‘mobilized” (=made flippable) by a
certain number of spin flips in its neighbourhood.

We define the cooperativity length / of a particular spin in a particular spin configuration
of the infinite lattice as the minimum distance from that spin up to which other spins,
which originally are in the down state, need to flip, before the spin considered becomes
flippable. The distance is expressed by the neighbour-shell number. Using the intuitive
anthropomorphic term, spins up to that distance need to ‘cooperate’ in onder to mobiiize
the spin considered. p; is the probability for a spin to have cooperativity length f (f = 0).*
The average cooperativity length {I} is obtained as

=2 In @)
I=1

To calculate p;, a computer algorithm is needed which determines the cooperativity length /
for every spin in a random selection of spin configurations. We developed and used such an
algorithm for the NE model, the two-spin facilitated kinetic Ising model and the hard-square
lattice gas [10]. While the algorithm for the NE model is straightforward, it is fairly involved
for the hard-square lattice gas. We shall not describe the algorithms here,

Alternatively, p; may also be derived from the integrated probability

PI - Z pr. (22)

We will outline this second method, as it is more easily explained than the first method of
directly calculating p;. Pr is the probability that the cooperativity length of a spin is not
larger than 1. If a spin in a particular spin configuration has a cooperativity lenpth not larger
than /, it can be mobilized by the flipping of spins on and within the /th shell of neighbours
around it. Therefore P can be determined as the probability that a spin can be mobilized

by a sequence of spin flips which involve only spins on and within the /th neighbour shell,
pi is obtained from P as

pr=F— P gz

2.3
po = Po. @3
(po = Pp is the probability that a spin can flip in the original spin configuration.)

Figure 1 illustrates the calculation of p; from the integrated probability for the two-spin
facilitated kinetic Ising model on the square lattice. The squares drawn mark the different
shells of neighbours around the spin considered, which is blocked in the direction shown.
The nearest flippable down spins are found on the fourth neighbour shell, Therefore, ! is
at least four. To test whether / is four or larger, we flip all flippable down spins on and
within the fourth-nearest-neighbour shell. This step is repeated until a stable configuration

* In [2), the symbol p; has a different meaning.
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Figure 1. Cooperativity in the two-spin facilitated kinetic Ising model. The blocked spin in the
center becomes flippable in the nineth step of the ca. The cooperativity length of the central
spin amounts 1o 4.

is obtained. The sequence of steps defines a cellular automaton (Ca). If the spin under
consideration is flippable in the final state reached by the CA, ! cannot be larger than 4, If,
on the other hand, the orientation of that spin is still blocked in the final state of the Ca, that
spin cannot be made flippable by any sequence of spin flips on and within the /th neighbour
shell. In this case ! is larger than 4. In figure 1 the number of step in which a spin is
flipped is marked. The spin in the centre is flipped at the nineth step. Therefore, the first
case applies. Since we saw before that / is at least four, [ = 4 holds for the example shown.
For all models described in this paper a Ca exists by which P can be determined. Note
that there exist lattice-gas and kinetic Ising models with kinetically constrained dynamics
which do not possess this property [11]. .

The definition of the cooperativity length given above and used in this paper expresses
the intuitive idea of cooperativity in a most direct way, However, alternative definitions,
which were used previously, are more convenient for computation. To calculate the
integrated probability P, as described above, a Ca needs to be run for every spin and
configuration separately. However, if periodic boundary conditions are introduced for all
spins of a finite lattice of size L x L, a CA needs to be run only once. It is therefore
convenient to define a CA which in a repeated process flips all flippable down spins in
a L x L lattice with periodic boundary conditions. Let f; denote the fraction of spins
which remain blocked in the final state of this Ca, averaged over many spin configurations.
Then g7 = fi_1 — f1 represents the probability that a spin in a lattice of linear dimension
L — 1 is permanently blocked, but not in one of linear dimension L (L 2 I, fo = 1). (If
foo > 0, which is the case in the NE model and Cayley-tree model below the critical up-spin
concentration, g; needs to be normalized by a factor (1 — foo)~L.)

From gq; we derive the average length

Br = la (2.4)
1=l

which is the average size that a lattice with periodic boundary conditions must have for a
spin not 1o be permanently blocked [2]. Although the situation is somewhat obscured by
the use of periodic boundary conditions, {{)r may also be interpreted as a characteristic
length of cooperativity.
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For the average cooperativity length, a second alternative definition is obtained as
follows. Again the CA for a L x L lattice with periodic boundary conditions is used.
Let wy(c) dencte the probability that the final configuration of the automaton is the all-up
spin state, i. e. the probability that no permanently blocked spins exist. In lattice-gas terms,
wy (c) can be expressed as the probability that all particles on the lattice are culled, for a
culling rule which translates the spin CA into lattice-gas language. In this way wi(c) is
related to a problem of bootstrap percolation [12]. From w;(c) a characteristic length can
be derived in two different ways. First, putting w,(¢) = w, with, say, w = 50% defines
the characteristic length L = £,(c) [3,13, 14]. In the second way a characteristic length is
obtained via a critical L-dependent up-spin concentration cp(L), which is defined by

RG]
cp(L) = fo ¢ ——d. (2.5)

Inversion of the function c,(L) yields the characteristic length £,(c) [15]. Because of
their relation to bootstrap percolation, we refer to the characteristic lengths &, and &, as
‘percolation lengths’.

The cooperativity lengths defined above are obtained either from effectively infinite
systems ({{)) or from finite systems with periodic boundary conditions in both lattice
directions ({{}g, £y, ;). An alternative method, which exploits the difference of relaxation
times occurring for different types of boundary conditions, has been used by Butler and
Harrowell [16]. These authors derive a correlation length of cooperative motion from the

distance from a boundary over which the relaxation time of a spin depends on whether the
boundary condition is blocking or free.

2.2. {3.2)-Cayley-tree model [2]

Ising spins occupy the sites of a Cayley tree, where every site except the site at the base has
three next neighbours, two above and one below. The spins are randomly oriented, with
up-spin probability ¢. The kinetic constraint of the madel allows a spin to flip only if both
its upper neighbours are in the up state. The model exhibits a sharp blocking transition at
3 critical up-spin concentration ¢* = 1/2. For concentrations ¢ < ¢* a finite fraction f of
spins is permanently blocked on the infinite tree. f plays the role of an order parameter
for the dynamical phase transition. The phase transition is of second order,

Every site of the Cayley tree is at the base of a new tree and by the kinetic constraint
every spin is coupled to all spins belonging to the tree above it. The cooperativity length !
is defined as the minimum height up to which spins have to be flipped to render the spin at
the base flippable.

Reiter, Mauch and Jickle [2] have presented an approximate analytical calculation of
the probability fr that a spin at the base of a Cayley tree of height / is permanently blocked.

Since the spins on the highest level are blocked, f; is connected with the distribution of
cooperativity lengths p; by

fr= i pr (2.6)

=)

whence

pi = fi — finr. @7
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Figure 2. Directed path of down spins in the NE model. The blocked spin in the comer has
cooperativity length [ = 3.
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For concentrations ¢ close to ¢*(|c — ¢*|/c* &« 1) two regions [ < ly and I >
(I =~ 1/(2¢), € = |c — ¢*]) may be distinguished. Using the results of [2], we obtain

1 1

PR OTorarhatsy i< @)
and
4¢2
p (1_:(,—)2 exp(l — 2¢l) for [ > k. 2.9
This yields for the average cooperativity length
{Iy~—B —4injc —c*| {2.10)

where B is a positive constant.

2.3. North-east model {2]

On a square lattice non-interacting Ising spins point upward with probability ¢ and downward
with probability 1 —c. A spin is allowed to flip only if its two nearest neighbours to the
north and to the east both are up spins. Like the (3,2)-Cayley model the north—east model
exhibits a sharp blocking transition which is of second order. The critical concentration is
¢* = 0.294 [2], By the kinetic constraint a spin is kinetically coupled to the spins north-east
of it, i. e. to the spins in the upper right quadrant, of which it occupies a corner, It is
independent of all other spins. Therefore, for the calculation of the cooperativity length of
a particular spin, only the spins in this quadrant have to be considered.

A spin has cooperativity length / if down spins up to the /th neighbour shell in the upper
right quadrant from this spin need to be flipped in order to make this spin flippable. The
minimum number of down spins which need to be flipped form a directed path which starts
from a blocking down spin neighbour of the spin considered. The directed paths contain
only steps going in the north or the east direction. Therefore, the cooperativity length / is
also the maximum length of directed paths of down spins which start from the blocking
down spin neighbours north or east of the spin considered (for / 2 1). The path length is
measured by the maximum distance reached in the north~east direction. Figure 2 shows an
illustrating example with [ = 5.
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Figure 3 shows a semi-log plot of the distribution p; of cooperativity lengths for various
concentrations for the lattice size 128 x 128. Note that there is a qualitative similarity
between p; in the (3,2)-Cayley model and in the north-east model. For great lengths
pr decreases exponentially, whereas for lengths which are shorter than a concentration-
dependent threshold the decrease is non-exponential.

]

o1

Py

an

ey

l

Figure 3. Distribution of cooperativity lengths p; for the NE model for the concentrations
¢ = 0.30, 0.43, 0.41, 0.39 and 0.37 (from below). Lattice size is 128 x 128.

The average cooperativity length (/) diverges at the critical concentration ¢*, Our results
for {I} obtained for the lattice size 128 x 128 can be fitted by {/) o (¢ ~c*)™" with a critical
exponent v = 1.43 in the concentration range (.37 £ ¢ < 0.46. One should expect that {/)
diverges like the longitudinal correlation length &, of the directed site percolation problem
on a square lattice. However, the critical exponent for &; is v = 1.73 [17]. The origin of
this discrepancy is not clear. One possibility is that we have not reached the asymptotic
critical region in our calculation of the average cooperativity length. (The same situation

occurs for the characteristic length (I} of [2], for which a critical exponent v = 1.37 was
derived.)

2.4. Two-spin facilitated kinetic Ising model

The two-spin facilitated kinetic Ising model has already been introduced in section 1.1.
As opposed to the models with a directed kinetic constraint, this model has no blocking
transition at a finite up-spin concentration in the thermodynamic limit L -~ oo [7, 18].

As the kinetic constraint is isotropic, the distributions of cooperativity lengths for up
spins and for down spins are different. If a spin points upward, the probability of being
flippable for the spins in the first-neighbour shell around it is enhanced, since only one
additional up spin is required on the second-neighbour shell. Therefore, the probability p,
for 4 spin to point upward and have cooperativity length / exhibits a maximum at / = 1
(figure 4a). Conversely, if a spin points downward, the nearest-neighbour spins around
it are less likely to be flippable than on average, smce two up spins are required on the
second-neighbour shell. Therefore the probabﬂlty p[ for a spin to point downward and
have cooperativity length [ exhibits a minimum at / = I (figure 4b). The strong maximum
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Figure 4, Probability p,T for a spin to point upwards and have the cooperativity length { (left)

and probability p} for a spin to point downwards and have the cooperativity length [ (right) for
the two-spin facilitated kinetic Ising model. Concentrations (from above) are ¢ = 0.15, 0,13,
0.11 and 0.08. Lattice size is [28 x 128.

in pf survives in the total probability pr of cooperativity length [, which is the sum of p,T
and p,‘L. pi 15 plotted in figure 5 for various concentrations for lattice size 128 x 128. The
most important feature of the p;-curves is the broad maximum occurring near the average
cooperativity length (I} (cf equation (2.13)). This feature is explained qualitatively by the
existence of ‘critical droplets’ [18] in a growth process for all-up spin clusters. The argument
is as follows. A growth process is considered by which square all-up spin clusters grow
layer by layer around a central up spin. (Alternatively, one may also consider the growth
from a corner [18).) In accord with the kinetic constraint of the model, an [ x { all-up spin
cluster grows to size ( + 2) x (f 4 2), if on each of the four edges of the (I + 2)th layer
at least one up spin exists [18]., Since for up-spin concentration ¢ the average separation
between up spins is 1/c, an all-up spin cluster of size &, x I, with [, > 1/c will almost
certainly grow arbitrarily large. Such a cluster may be called a ‘critical droplet’ [18], by
analogy with classical nucleation theory, Let p. dencte the probability for a particuiar cell
of size !, x I of the lattice to contain such a critical droplet. If we divide a large lattice of
size L x L into (L/1.)? celis of this size,

Wy =1— (1 — p)t/’ (2.11)

is the probability for at least one of the cells to contain a critical droplet. Since p. <« 1 for
small ¢ < 1, we may write

We = 1 — exp{~p(L/1)?).

Wy is an approximation for the probability w; (section 1.1) that the all-up spin state can
be reached from an arbitrary spin configuration of the L x L lattice. Since many paths of

(2.12)
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growth are neglected in the growth process considered, W, is 2 lower bound to w,, dwrg /dL
increases linearly with L for small L and has a broad maximum at Lyss = I./+/2p.. We
expect the length dependence of the distribution of cooperativity lengths p; to be similar to
that of dw; /dL and its approximation dw; /dL. This is what we observe in figure 5.

08

04

02

¢ Inh

Figure 5. Distribution of cooperativity lengths py for the two-spin facilitated kinetic Ising model,
Concentrations (from above) are ¢ = 0.12, 0.11, 0.10, 0.09 and 0.08 (lattice size is 128 % 128).

1000

%0 D//

1/¢

Figure 6. Concentration dependence of the average cooperativity length (1} (O), the percolation
length £, (O) and the correlation length & (x) of Butler and Harrowell [16] for the two-spin
facilitated kinetic Ising model (data for &, from [15]). The lines represent the exponential fits
for large lengths.

Figure 6 shows our data for the average cooperativity length (I} together with the
results of Nakanishi and Takano {15] for the percolation length &,. Following the concept



Coaperativity length in madels for the glass transition 7333

of critical droplets, we can conclude {18, 19] that the asymptotic concentration dependence
of the percolation length &,(c) is of the form

&p(c) = aexp(b/c). (2.13)

The data of Nakanishi and Takano show this form (with @ = 0.48 and & = 0.27) for
higher concentrations where &, 2 70. Our data for {{) can be fitted to the same formula
for concentrations 0.08 < ¢ € 0.12 with different fit parameters ¢ = 1.13 and b = 0.215.
We have probably not reached the region of asymptotic concentration dependence of ().
Rather we expect the curves for (/) and &, to merge asymptotically for low concentrations.
Also included in the figure are data for an alternative definition of a correlation length §
of cooperative motion calculated by Butler and Harrowell [16]. § appears to increase more
slowly with decreasing up-spin concentration than {/} and §,.

2.5, Hard-square lattice-gas model {3}

The hard-square lattice-gas model is a lattice gas with diffusion dynamics (Kawasaki
dynamics) on a sguare lattice in two dimensions. The particles have an exitended-hard-
core interaction which forbids the simultaneous occupation of nearest-neighbour sites on
the lattice. As a consequence, particles behave like hard squares, which are allowed to
touch one another at comners but not to overlap, A particle can jump to a nearest-neighbour
site only if the nearest-neighbour sites of the new site are vacant. Besides this kinetic
contraint, the hard-core interaction also causes an order—disorder phase transition, which
occurs at the critical particle concentration ¢* = 0.3677. For concentrations higher than c*
one of the two sublattices is preferentially occupied. The model has no blocking transition
below the maximum concentration ¢max = 1/2.

We call a particle ‘blocked’ if it cannot jump in any of the four directions, and ‘mobile’
otherwise. For a blocked particle to become mobile a sequence of jumps of other particles
has to take place first {cf figure 1 for the spin model). The cooperativity length [ of a particle
in a certain lattice configuration is defined as the minimum distance up to which particles
are involved in such a sequence. A particle can be blocked only by particles on sites of
the same sublattice, since the nearest-neighbour sites around a particle, which belong to the
other sublattice, are always empty. Therefore, only particles on the same sublattice need be
considered in a sequence of jumps. For this reason we measure the distance up to which
such a sequence extends by the numbers of neighbour shells on one sublattice.

The distribution p; of cooperativity lengths and the average cooperativity length {{) were
calculated for a selection of lattice-gas configurations, which were prepared by computer
simulation. To prepare a configuration we start with a lattice of maximum concentration
{cmax = 1/2} and let the system equilibrate for a certain length of time, typically 4000 Monte
Carlo steps per site (MCS). For the equilibration we use Glauber dynamics, whereby particles
are randomly condensed on and evaporated from the sites of the lattice according to a given
activity z. This procedure is necessary because it is impossible to obtain configurations
with a density higher than 0.3641 by placing particles randomly on an empty lattice [3, 20].
For the calculation of the cooperativity length a computer algorithm was developed which
is not reproduced here. For every configuration prepared by the equilibration process this
algorithm is run to determine the cooperativity length of every particle.

The results for p; for lattice size 128 x 128 and for various concentrations are shown
in figure 7. The length dependence of p; resembles the behaviour of p; for the two-spin
facilitated kinetic Ising model. For concentrations higher than ¢ ~ (.38, p; exhibits a
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Figure 7. Distribution of cooperativity lengths p; for the hard-square lattice-gas. Concentrations
(from above) ¢ = 0.378, 0.389, 0.397, 0.404 and 0.411 (lattice size 128 x 128},

broad maximum near the average cooperativity length. This maximum can be explained by
the existence of critical droplets in a growth process for vacancy clusters on the majority
sublattice [14], using similar ideas as for the two-spin facilitated kinetic Ising model.

The concentration dependence of the average cooperativity length is shown in figure 8,
where 2{/} 4+ 1 is plotted semi-logarithmically versus 1/c;. ¢z = 1 — 2c is the hole
concentration on the majority sublattice in the ordered phase well above ¢*; 2(l} + 1
rather than {{} is plotted for comparison with the percolation length &5 [14], since the
{th neighbour shell is contained in a square of width 2/ 4+ I. (All lengths are in units of the
lattice constant of a sublattice.) According to figure 8, for high particle concentrations the
two lengths 2{/) + | and &5 become identical, with an exponential dependence on the hole
concentration proportional to exp(b/cy) (b > 0 is a constant). However, as for the other
models, we have not reached the asymptotic behaviour for ¢ — 0.5, which, according to
Frobdse [14] does not start below ¢ =2 0.475. Frobdse's results indicate that the asymptotic
dependence of the characteristic lengths on 1/c; may be more rapid than exponential.

3. A sum formula for the autocorrelation function

It is a central idea of the theory of dynamic critical phenomena to relate a characteristic
relaxation time to the correlation length of order-parameter fluctuations. If a similar relation
between the characteristic length and time exists for our models, the only candidate for
the characteristic length is the average cooperativity length (), or one of its alternatives.
Comparing the average cooperativity length in our models with the correlation length of
critical fluctuations, one notices an important difference: () is not the correlation length
for the space-dependent fluctuations of some measurable quantity, but needs to be extracted
from the puzzle of cooperative spin or particle dynamics. We found that the individual
cooperativity length { is given by the length of a directed path of down spins for the NE
model. For the two-spin facilitated kinetic Ising model and the hard-square lattice gas !

must be determined by means of a cellular automaton, which derives from the Kinetic rule,
or by a related algorithm.



Cooperativity length in models for the glass transition 7335

00

2<l> +1,§5
=}

ifc,

Figure 8. Concentration dependence of the percolation length &5 (L) and of 2{Iy + 1 (O) for
the hard-squate lattice-gas (data for & ¢ from [14]). Lattice size 128 x 128 (cp =1 —2¢).

Adam and Gibbs [1] had assumed the size of a cooperatively rearranging region to
be inversely proportional to the configurational entropy per molecule. We note that an
analogous relation between the average cooperativity length and the entropy of the models
considered above does rot exist. In fact, the cooperativity length of the models is not related
in any simple way to their entropy. For the models with a sharp blocking transition the
entropy is continuous where the cooperativity length diverges. For the two-spin facilitated
kinetic Ising model {{} diverges for ¢ — 0 with an essential singularity (equation 2.13}),
whereas the inverse of the entropy per spin diverges only as [c(1 — inc)]™'. A similar
difference exists for the hard-square lattice gas. The assumption of inverse proportionality
between the size of the cooperatively rearranging regions and the configurational entropy is
a crucial point in the derivation of the Adam-Gibbs relation

{T} ocexpla/S,) {a > 0, constant) (3.1)

between the average relaxation rate {r} and the molar configurational entropy, For our
modeis, therefore, the Adam—Gibbs formula (3.1) seems to have no justification in terms
of cooperativity, Nevertheless, Fredrickson [21, 221 found the formula to hold with good
accuracy in a2 wide range for the two-spin facilitated kinetic Ising model, There is no
consistent explanation of this agreement.

Here we leave the path of Adam and Gibbs and search for a direct relation between the
distribution of cooperativity lengths and the dynamic properties of the models, We propose
an expression for the autocorrelation function in terms of relaxation rates y; associated with
cooperativity lengths /. From the autocorrelation function the average relaxation time can
be calculated. Our search was stimulated by figure 2 of [9] for the hierarchically constrained
kinetic Ising chain, which shows that the autocorrelation function for the infinite chain can
be obtained as the envelope function of the autocorrelation functions for finite chains with
blocking boundary, A mathematical expression of similar type was proposed by Palmer,
Stein, Abrahams and Anderson [23], who ascribed the origin of the Kohlrausch-Williams—
Watts stretched exponential form exp[—(¢/7)#] of relaxation functions for glassy materials
to the hierarchical coupling of a series of relaxation processes.
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Figure 9. Monte Carlo data for ¢£2(s), L = 3,4 and 5 and for the autocorrelation function of
the infinite system (undermost curve) for the NE model, The horizontal lines mark the asymptotic
values $*?{og), Concentration ¢ = 0.50.

3.1, Blocking boundary conditions and coaperativity length

To decompose the autocorrelation function for the infinite system into contributions from
different cooperativity lengths, it is useful to consider finite systems with blocking boundary.
We formulate the case of Ising models with single-spin flip (Glauber) dynamics. An

analogous formulation applies to the case of lattice-gas models with diffusion (Kawasaki)
dynamics. Let

U@ = (o (1) (0)) .5/ (4c(1 — ©)) (3.2)

denote the normalized autocorrelation function for the spin at the origin if the spins on the
Lth neighbour shell are fixed in their initial directions. Under this condition only spins up
to the (L — 1)th neighbour shell can flip, provided that the kinetic rule is obeyed. Therefore,
the spin at the origin is permanently blocked unless its cooperativity length is not larger
than L — 1. Since the probability that the spin at the origin is not permanently blocked is
given by the total decay 1 — ¢£-#(00) of the autocorrelation function, the equation

L=1
1-¢"00) =} pr = Proy (3.3)
1=0
follows. Taking the difference between L and L -+ 1 we obtain
PhP(00) — gt ooy =y for L2 1 (3.4)
and
1 — ¢"*{00) = po. (3.5)

With these relations we have expressed the probability for cooperativity length L via
the difference between the infinite-time limits of the autocorrelation function for blocking
boundary at L and L 4- 1. The relation is illustrated in figure 9. Here and in the following
the unit of time is defined as the inverse of a spin-flip attempt frequency, so that the flip
rate of flippable up and down spins is given by (1 — ¢} and ¢, respectively.
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3.2, Sum formula

We propose an approximate sum formula which expresses the normalized spin-
autocorrelation function ¢{¢) of the infinite system by a sum of exponentials, We arrive at
this formula in the following way.

Since ¢(¢) is the limit of the autocorrelation functions ¢L-4(f) of finite systems with
blocking boundary conditions for L — o0, it can be expressed as a sum over the differences
of the latter. The expression reads

¢ =1-)_(8"°(0) ~ ™12 (1)) (3.6)
L=0

where we put %) = 1. We approximate each difference in the simplest possible way as
L) — $FHIP ) = pL(1 — &) (3.7

with a single L-dependent relaxation rate y,. We choose ¢ to be the smallest relaxation
rate occurring in the expression for ¢L+!-2(¢) — pL+14(c0), i. e. the rate which determines
the asymptotic decay of the function ¢%+!2(r) towards its infinite-time limit:

¢L+1’b(t) _ ¢L+1.b(°°) ~ exp(_th) for ¢t = oo. (3.8)

Inserting (3.7) in the sum (3.6) yields a sum formula for an approximation 5(1) of ot

o0

B() — ploc) = Y pre, 3.9)

L=0

{For ergodic systems we have Pp, = 1 and ¢r(oc) = 0.)

Note that (3.7) is in accord with (3.4). However, the approximation (3.7) is fairly crude,
since the time dependence of ¢£2(¢) — ¢pL*+14 (1) is generally non-exponential too. It can be
shown that this difference grows at least like r~*! for short times, in contrast to the linear
growth with ¢ which follows from (3.7). Nevertheless, with this approximation formula
(3.9) reproduces characteristic features of the autocorrelation function ¢{z), as is shown
now for an example of the NE model. We mention that formula (3.9) was applied already
to the special case of the hierarchically constrained kinetic Ising chain by Eisinger [8].

3.3. Test of approximation formula for the NE mode!

We tested the accuracy of formula (3.9) for the NE model at concentration ¢ = 0.5,
The distribution py of cooperativity lengths was calculated by computer simulation (see
section 1.3). To evaluate the relaxation rates y; we alse used simulations. Following
the definition (3.8) we have to simulate ¢%%(t) for different values of L. Then yy
should be obtained by measuring the slope of In (@' -2(5) — ¢"*+'P(cc)) for long times.
Unfortunately, the relaxation rates y; could not be determined with sufficient accuracy by
this procedure. Instead, we derived the relaxation rate y; from the asymptotic decay of a
modifted autocorrelation function ¢, (¢), in which the contribution of the smallest relaxation
rate is more pronounced. ¢ (#) is defined as the autocorrelation function of a spin with
cooperativity length L which is at the centre of a system of size L 4+ 1 with blocking
boundary. Here we assume that the smallest relaxation rate occurring in ¢, (t) and ¢Z14(z)

is the same, so that ¢1.(¢) also decays with relaxation rat¢ y;, for ¢ = oc. This assumption
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is very plausible since a spin contributing to ¢.(#) also contributes to ¢*+4¥(r), and L is
the longest possible cooperativity length in a system of size L 4+ 1 with blocking boundary.
Figure 10 shows a Kohirausch plot of the Monte Carlo results for ¢ () for lengths L = 1
to L = 12 at up-spin concentration ¢ = 0.5. The asymptotic exponential behaviour yields a
straight line with unity slope. The relaxation rate y; can be obtained from the intersection
point of this line with the ordinate axis (figure 11). Because of the slowing down of the
relaxation with increasing length, the procedure of obtaining the relaxation rates y; from
the asymptotic behaviour of the autocorrelation function ¢z () requires a huge amount of
computation time for large lengths L. Therefore for lengths L > 12 we extrapolated the
power-law behaviour of y, which is observed for L ranging from 6 to 12, to larger L
values (dashed line in figure 11). The relaxation rates obtained by extrapolation affect ¢(¢)
appreciably only for long times ¢ 3 107

//

o

1 1600

time [MCS]

Figure 10, Kohlrausch plot of the Monte Carlo results for ¢ (1), for L from 1 o 12 (from the
left) for the ¥E model. Concentration ¢ = 0.50.

Figure 12 shows a Kohlrausch pliot of the result for the sum formula (3.9) in comparison
with the Monte Carlo curve for ¢(f) at the same up-spin concentration ¢ = 0.5. Although
the agreement is not quantitative, the sum formula reproduces the main characteristics of
¢t} at short and intermediate times remarkably well. The slope in the intermediate time
region (5 < ¢ < 500), which corresponds to a fractional exponent 8, = 0.36, is reproduced
rather accurately. We note that for long times the exponential decrease of p;, together with
a power-law dependence y; o« L™ of the relaxation rate for large L yields, by the method
of steepest descent, a Kohlrausch-Williams—Watts-like dependence of ¢(¢) with fractional
exponent 8 = (1 +a)~'. 8 =0.36 is obtained for & = 1.78, which is close to the average
slope (= 1.73) of y, in the log~log plot of figure 11.

The result of the sum formula for the asymptotic long-time regime must remain open,
since the relaxation rates y; for large L (L 3> 12) could not be determined. The Kchlrausch
piot of the available Monte Carlo data in figure 11 shows that the effective fractional
exponent increases to about 0.5 at the longest times, but an exponential asymptotic decay
of ¢(t) cannot be ruled out.

Monte Cario data of ¢(¢) for other concentrations look qualitatively similar to the result
for ¢ = 0.5. However, the fractional exponent 8, which characterizes the time dependence
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Figure 11. Relaxation rates yr which are obtained from the asymptotic exponential decay of
®1(t) (see figure 10). The dashed line extrapolates the power-law fit y, oc L~157 gbtained for
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Figure 12. Kohiravsch plot of the result for the sum formwla (apper curve) and the Monte
Carlo curve (lower curve) for the autocorrelation function ¢ (¢} for the NE model. Concentration
¢ = 0.50.

of ¢(¢) in the intermediate time regime, is found to vary. For example, for ¢ = 0.44 we
obtain B8, = 0.30. We anticipate from this result that the form of the L-dependence of the
relaxation rate y, i.e. its approximate power-law dependence, also varies with c.

4. Conclusion

Regarding the relevance of the cooperativity length to measurable physical quantities, its
most obvious consequence is the existence of size effects. In systems of linear dimension
smaller than the average cooperativity length, most of the spins (or particles) are permanently
blocked and no longer contribute to the response of the system to external perturbations.
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Similar effects are to be expected for real undercooled liquids in confined geometries if
the average cooperativity length of the liquid becomes comparable to or larger than the
confining length. The experimental observation of such a size effect would yield the
average cooperativity length most directly. Systems of interest are glass-forming liquids
filled in porous inorganic crystals or glasses [24], or the amorphous regions of semicrystalline
polymers [25], The glass transition of such confined liquids could be probed by a variety
of experimental techniques, the most common being the differential scanning calorimetry.
The suppression of cooperative motion due to confinement should lead to a broadening
and shift to lower temperature of the glass transition. So far only a broadening has been
observed, but not a shift to lower temperatures [24,25]. The difficulty lies in the smallness
of the cooperativity length of glass-forming liquids, which has been estimated to be of the
order of 20 A [26). In systems of comparable linear dimensions the size effect due to the
suppression of cooperative motion may be masked by effects of liquid—wall interactions.

As a second consequence of the concept of a cooperativity length, we explored a possible
connection between the autocorrelation function and the distribution of cooperativity lengths,
assuming a relation between cooperativity length and relaxation rate, Introducing blocking
boundary conditions for finite systems, we arrived at a sum formula for the normalized
autocorrelation function of the infinite system, which contains the probabilities pr of
cooperativity lengths L and the associated relaxation rates y; as parameters. The relaxation
rate y; is chosen to be the smallest relaxation rate of a system of size L with blocking
boundary. This choice of the relaxation rate is not unique since the autocorrelation function
for spins with a particular value of the cooperativity length is also of stretched exponential
form. However, for our choice the sum formula was found to yield good overall agreement
with the Monte Carlo data for the autocorrelation function of the NE model for up-spin
concentration ¢ = 0.5, In particular, the effective fractional exponent 8, = 0.36 for the
intermediate time region is well reproduced. It would be of interest to test the validity of
our surn formula for other models and concentrations as well.
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