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The cooperativity length in models for the glass transition 
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Abslract Kinetic king and lattice-gas models with kinetic wmrraints may Serve as models 
of cooperative dynamics in undercooled liquids near the glass m i t i o n .  For a class of these 
models the cwperativity le@ of a spidpanicle is defined and ils distribution calculated. It is 
found that, wntraty to an assumption of Adam and Gibb. (here is no simple relation keelween the 
cooperativity lengfh and the entmpy of these models. For the autocomlalioa funcfions, which 
exhibit a suetchedexponential time dependence, an approximate sum formula is proposed which 
contains a relaxation rate depending on cwprativity length. The sum formula is tested for a 
paRicular case and found to give gwd overall agreement with Monte Carlo data. 

1. Introduction 

In the discussion of the physical mechanism of the enormous slowing down of the diffusive 
molecular motion in an undercoded liquid near the glass transition the idea of molecules 
rearranging themselves cooperatively within regions of a characteristic size [ I ]  has been 
found to be very attractive. The idea had been made quantitative by relating the size of 
a ‘cooperatively rearranging region’ to its content of configurational entropy [l]. During 
the last decade a class of kinetic king and latticegas models with kinetic constraints were 
investigated 12-91 which give the idea of cooperativity a concrete meaning. It is the purpose 
of the present paper to define and calculate the characteristic length of the cooperative 
process for different models and to relate this length to measurable physical quantities. 

The paper is organized as follows. In section 2. I the cooperativity length of the models 
is defined according to our intuitive understanding of the term ‘cooperative’. Altemative 
definitions of a characteristic length, which use periodic boundary conditions, are listed 
for comparison. The results for the probability distribution of the cooperativity length are 
presented in sections 2.2-2.5. The models investigated are: the (3,2)-Cayley-tree model, 
the north-east (NE) model, the two-spin facilitated kinetic Ising model and the hard-square 
lattice-gas model. The first two of these models, which have a directed constraint, exhibit 
a sharp blocking transition at a critical up-spin concentration. In section 3 an approximate 
sum formula for the autocorrelation function of the models is proposed, which contains a 
relaxation rate depending on the cooperativity length. The validity of the sum formula is 
tested for the NE model in section 3.3. The results of the paper are summarized in section 4. 

2. Distribution of cooperativity lengths 

2.1. Definitions 

We first define the cooperativity length I for the two-spin facilitated kinetic king model. 
This definition can be extended to all kinetic king models with a kinetic constraint. A 
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similar definition applies to lattice-gas models with constrained diffusion dynamics. In the 
two-spin facilitated kinetic king model the lattice sites are occupied by spins which are in 
the up state with probability c, and in the down state with probability 1 - c.  There is no 
static interaction between the spins. The kinetic constraint allows a spin to flip (in either 
direction) only if at least two of its four neamt neighbours, no matter which, point in the 
up direction. We call a spin ‘flippable’ or ‘blocked’ depending on whether it is allowed to 
Rip or not. A spin which is initially blocked may be ‘mobilized’ (-made Rippable) by a 
certain number of spin flips in its neighbourhood. 

We define the cooperativity length 1 of a panicular spin in a particular spin configuration 
of the infinite lattice as the minimum distance from that spin up to which other spins, 
which originally are in the down state, need to flip, before the spin considered becomes 
flippable. The distance is expressed by the neighbour-shell number. Using the intuitive 
anthropomorphic term, spins up to that distance need to ‘cooperate’ in order to mobilize 
the spin considered. pi is the probability for a spin to have cooperativity length 1 (I O).* 
The average cooperativity length ( 1 )  is obtained as 

D Sappelt and J Jdckle 

To calculate p t .  acomputer algorithm is needed which determines the cooperativity length I 
for every spin in a random selection of spin configurations. We developed and used such an 
algorithm for the NE model, the two-spin facilitated kinetic Ising model and the hard-square 
lattice gas [IO]. While the algorithm for the NE model is straightfoward, if is fairly involved 
for the hard-square lattice gas. We shall not describe the algorithms here. 

Alternatively, pi may also be derived from the integrated probability 

We will outline this second method, as it is more easily explained than the first method of 
directly calculating pl.  fl is the probability that the cooperativity length of a spin is not 
larger than 1. If a spin in a particular spin configuration has a cooperativity length not larger 
than I, it can be mobilized by the flipping of spins on and within the lth shell of neighbours 
around it. Therefore fl can be determined as the probability that a spin can be mobilized 
by a sequence of spin flips which involve only spins on and within the lth neighbour shell. 
pi is obtained from 9 as 

PI = 9 - 9-1 

PO = Po. 
(1 2 1) 

(PO = Po is the probability that a spin can flip in the original spin configuration.) 
Figure 1 illustrates the calculation of pi from the integrated probability for the two-spin 

facilitated kinetic king model on the square lattice. The squares drawn mark the different 
shells of neighbours around the spin considered, which is blocked in the direction shown. 
The nearest flippable down spins are found on the fourth neighbour shell. Therefore, 1 is 
at least four. To test whether 1 is four or larger, we flip all flippable down spins on and 
within the fourth-nearest-neighbour shell. This step is repeated until a stable configuration 

* In [Z], the symbol pi has a different meaning 
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Figure I. Caoperativity in the two-spin facilitakd Uwtic king model. T k  blackd spin in ule 
cEnW becomes flippable in the Rinelh step of the CA. The woperativity length of the central 
spin mounts to 4. 

is obtained. The sequence of steps defines a cellular automaton (a). If the spin under 
consideration is flippable in the final state reached by the CA, I cannot be larger than 4. If, 
on the other hand, the orientation of that spin is still blocked in the final state of the CA, that 
spin cannot be made flippable by my sequence of spin flips on and within the Ith neighbour 
shell. In this case I is larger than 4. In figure 1 the number of step in which a spin is 
flipped is marked. The spin in the centre is flipped at the nineth step. Therefore, the first 
case applies. Since we saw before that I is at least four, I = 4 holds for the example shown. 
For all models described in this paper a CA exists by which f i  can be determined Note 
that there exist lattice-gas and kinetic king models with kinetically constrained dynamics 
which do not possess this property [ I  I] .  

The definition of the cooperativity length given above and used in this paper expresses 
the intuitive idea of cooperativity in a most direct way. However, alternative definitions, 
which were used previously, are more convenient for computation. To calculate the 
integrated probability P, as described above, a a needs to be run for every spin and 
configuration separately. However, if periodic boundary conditions are introduced for all 
spins of a finite lattice of size L x L, a CA needs to be run only once. It is therefore 
convenient to define a CA which in a repeated process flips all flippable down spins in 
a L x L lattice with periodic boundary conditions. Let f r  denote the fraction of spins 
which remain blocked in the final state of this CA, averaged over many spin configurations. 
Then qr. = fr-l - fr represents the probability that a spin in a lattice of linear dimension 
L - 1 is permanently blocked, but not in one of linear dimension L ( L  > 1, f o  = I ) .  (If 
fa > 0, which is the case in the NE model and Cayley-tree model below the critical up-spin 
concentration, needs to be normalized by a factor ( 1  - fm) - ’ . )  

From 9‘ we derive the average length 

m 
( 1 ) R  = c191 (2.4) 

( = I  

which is the average size that a lattice with periodic boundary conditions must have for a 
spin not to be permanently blocked [2]. Although the situation is somewhat obscured by 
the use of periodic boundary conditions, ( 1 ) ~  may also be interpreted as a characteristic 
length of cooperativity. 
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For the average cooperativity length, a second alternative definition is obtained as 
follows. Again the CA for a L x L lattice with periodic boundary conditions is used. 
Let wL(c) denote the probability that the final configuration of the automaton is the all-up 
spin state, i. e. the probability that no permanently blocked spins exist. In lattice-gas terms, 
“ ( c )  can be expressed as the probability that all particles on the lattice are culled, for a 
culling rule which translates the spin CA into lattice-gas language. In this way W L ( C )  is 
related to a problem of bootstrap percolation [ 121. From wL(c) a characteristic length can 
be derived in two different ways. First, putting wL(c )  = w, with, say, w = 50% defines 
the characteristic length L = &,(c) [3,13,14]. In the second way a characteristic length is 
obtained via a critical L-dependent up-spin concentration c p ( L ) ,  which is defined by 

(2.5) 

Inversion of the function cp(L)  yields the characteristic length tp(c) [15]. Because of 
their relation to bootstrap percolation, we refer to the characteristic lengths tw and tp as 
‘percolation lengths’. 

The cooperativity lengths defined above are obtained either from effectively infinite 
systems ( ( 1 ) )  or from finite systems with periodic boundary conditions in both lattice 
directions t,,,, tP). An alternative method, which exploits the difference of relaxation 
times occuning for different types of boundary conditions, has been used by Butler and 
Harrowell [16]. These authors derive a correlation length of cooperative motion from the 
distance from a boundary over which the relaxation time of a spin depends on whether the 
boundary condition is blocking or free. 

2.2. (3,2)-Cayley-tree madel [2]  

Ising spins occupy the sites of a Cayley tree, where every site except the site at the base has 
three next neighbours, two above and one below. The spins are randomly oriented, with 
up-spin probability c. The kinetic constraint of the model allows a spin to flip only if both 
its upper neighbours are in the up state. The model exhibits a sharp blocking transition at 
a critical up-spin concentration C* = 112. For concentrations c -z c* a finite fraction f of 
spins is permanently blocked on the infinite tree. f plays the role of an order parameter 
for the dynamical phase transition. The phase transition is of second order. 

Every site of the Cayley tree is at the base of a new tree and by the kinetic constraint 
every spin is coupled to all spins belonging to the tree above it. The cooperativity length I 
is defined as the minimum height up to which spins have to be flipped to render the spin at 
the base flippable. 

Reiter, Mauch and Jackle 121 have presented an approximate analytical calculation of 
the probability fr that a spin at the base of a Cayley tree of height 1 is permanently blocked. 
Since the spins on the highest level are blocked, fr is connected with the distribution of 
cooperativity lengths p ,  by 

m 
fl = PI’ 

k l  

whence 

PI = fl- h+l. 
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Figure 2. Directed path of down spins in the NE model. The blocked spin in Ihe comer has 
coopemtivity length I = 5. 

For concentrations c close to c*(lc - c*I/c* << I) two regions 1 c 10 and 1 z IO 
( lo  sz 1/(2c), 6 = IC - c*I) may be distinguished. Using the results of 121, we obtain 

1 1 
Pi =2 - 

( 1 - c)' (1 + 4) ( l+  5 )  

and 

for 1 < lo 

for 1 > lo. 

This yields for the average cooperativity length 

( l ) a - B - 4 i n J c - c * l  (2.10) 

where B is a positive constant. 

23. North-east model [2] 
On a square lattice non-interacting Ising spins point upward with probability c and downward 
with probability 1 - c. A spin is allowed to flip only if its two nearest neighbours to the 
north and to the east both are up spins. Like the (3,2)-Cayley model the north-east model 
exhibits a sharp blocking transition which is of second order. The critical concentration is 
C* = 0.294 [Z]. By the kinetic constraint a spin is kinetically coupled to the spins north-east 
of it, i. e. to the spins in the upper right quadrant, of which it occupies a comer. It is 
independent of all other spins. Therefore, for the calculation of the cooperativity length of 
a particular spin, only the spins in this quadrant have to be considered. 

A spin has cooperativity length I if down spins up to the Ith neighbour shell in the upper 
right quadrant from this spin need to be flipped in order to make this spin flippable. The 
minimum number of down spins which need to be flipped form a directed path which starts 
from a blocking down spin neighbour of the spin considered. The directed paths contain 
only steps going in the north or the east direction. Therefore, the cooperativity length I is 
also the maximum length of directed paths of down spins which start from the blocking 
down spin neighbours north or east of the spin considered (for 1 > 1) .  The path length is 
measured by the maximum distance reached in the north-east direction. Figure 2 shows an 
illustrating example with I = 5. 
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Figure 3 shows a semi-log plot of the distribution pi of cooperativity lengths for various 
concentrations for the lattice size I28 x 128. Note that there is a qualitative similarity 
between pl in the (3,2)-Cayley model and in the north-east model. For great lengths 
p ,  decreases exponentially, whereas for lengths which are shorter than a concentration- 
dependent threshold the decrease is non-exponential. 

Figure 3. DisVibution of Moperativity lengths p ,  for lhe M model for rhe concentrations 
c = 0.50. 0.43, 0.41. 0.39 and 0.37 (from below). Lattice size is 128 x 128. 

The average cooperativity length (1 )  diverges at the critical concentration c’. Our results 
for (1) obtained for the lattice size 128 x 128 can be fined by (I) o( (c-c*)-” with a critical 
exponent U = 1.43 in the concentration range 0.37 6 c 6 0.36. One should expect that ( I )  
diverges like the longitudinal correlation length tII of the directed site percolation problem 
on a square lattice. However, the critical exponent for ,$I is UII = 1.73 1171. The origin of 
this discrepancy is not clear. One possibility is that we have not reached the asymptotic 
critical region in our calculation of the average cooperativity length. (The same situation 
occurs for the characteristic length ( l ) ~  of [2], for which a critical exponent U = 1.37 was 
derived.) 

2.4. Two-spin facilifafed kinetic Ising model 

The two-spin facilitated kinetic Ising model has already been introduced in section 1.1. 
As opposed to the models with a directed kinetic constraint, this model has no blocking 
transition at a finite up-spin concentration in the thermodynamic limit L -+ 03 [7, 181. 

As the kinetic constraint is isotropic, the distributions of cooperativity lengths for up 
spins and for down spins are different. If a spin points upward, the probability of being 
flippable for the spins in the first-neighbour shell around it is enhanced, since only one 
additional up spin is required on the second-neighbour shell. Therefore, the probability p/ 
for a spin to point upward and have cooperativity length I exhibits a maximum at 1 = 1 
(figure 4a). Conversely. if a spin points downward, the nearest-neighbour spins around 
it are less l ie ly  to be flippable than on average, since two up spins are required on the 
second-neighbour shell. Therefore the probability p /  for a spin to point downward and 
have cooperativity length I exhibits a minimum at I = 1 (figure 4b). The strong maximum 



Cooperativity length in modelsfor the glass transition 7331 

Figure 4. Probability p! for a spin U) point upwards and have fhe cwperativity lengih 1 (left) 
and probability p: for a spin la point downwards and have the cooperativily length I (right) for 
h e  lwo-spin facilitated kinetic king model. Concenmtions (from above) are e = 0.15, 0.13. 
0.11 and 0.08. Lattice size is 128 x 128. 

in p/ survives in the total probability p, of cooperativity length I, which is the sum of pf 
and p?. p, is plotted in figure 5 for various concentrations for lattice size 128 x 128. The 
most important feature of the p p ~ ~ e ~  is the broad maximum occurring near the average 
cooperativity length (1) (cf equation (2.13)). This feature is explained qualitatively by the 
existence of ‘critical droplets’ [ 181 in a growth process for all-up spin clusters. The argument 
is as follows. A growth process is considered by which square all-up spin clusters grow 
layer by layer around a central up spin. (Alternatively, one may also consider the growth 
from a comer [IS].) In accord with the kinetic constraint of the model, an I x I all-up spin 
cluster grows to size (I + 2) x (f + Z), if on each of the four edges of the (I + 2)th layer 
at least one up spin exists [18]. Since for up-spin concentration c the average separation 
between up spins is l/c, an all-up spin cluster of size I, x le with f, >> l/c will almost 
certainly grow arbitrarily large. Such a cluster may be called a ‘critical droplet’ [MI, by 
analogy with classical nucleation theory. Let pc denote the probability for a particular cell 
of size I ,  x le of the lattice to contain such a critical droplet. If we divide a large lattice of 
size L x L into (L/1,)2 cells of this size, 

(2.11) - w L  E 1 - (1 - p,)‘Lf1c12 

is the probability for at least one of the cells to contain a critical droplet. Since pc << 1 for 
small c << 1, we may write 

(2.12) 

3~ is an approximation for the probability wL (section 1.1) that the all-up spin state can 
be reached from an arbitrary spin configuration of the L x L lattice. Since many paths of 

3 L  = I - exp(-pC(L/~,)*). 
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growth are neglected in the growth process considered, EL is a lower bound to WL. diFJdL 
increases linearly with L for small L and has a broad maximum at L ,  = IC/&. We 
expect the length dependence of the distribution of cooperativity lengths p ,  to be similar to 
that of dwL/dl and its approximation dVL/dL. This is what we observe in figure 5. 

D Sappelt and J Jdc!ii.e 
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Figure 5. Distribution of cwperativity lengths ,VI for the two-spin facilitated kinetic king model. 
Concentrations (from above) are c = 0.12.O.Il, 0.10, O M  and 0.08 (lattice size is 128 x 128). 

0 5 io 15 20 
l / C  

Figure 6. Concentration dependence of the average mperarivity length ( I )  (0). the permlation 
length ep (0) and ule comlation length C (e) of Butler and Harrowell [I61 for the two-spin 
facilitated hnetic king model (data for #p fmm [IS]). The lines represent the exponential flts 
for large lengths. 

Figure 6 shows our data for the average cooperativity length ( l )  together with the 
results of Nakanishi and Takano 1151 for the percolation length .$,. Following the concept 
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of critical droplets, we can conclude [ 18, 191 that the asymptotic concentration dependence 
of the percolation length c,,(c) is of the form 

6Jc) = aexp(b/c). (2.13) 

The data of Nakanishi and Takano show this form (with a = 0.48 and b = 0.27) for 
higher concentrations where tP 2 70. Our data for (1) can be fitted to the same formula 
for concentrations 0.08 6 c < 0.12 with different fit parameters a = 1.13 and b = 0.219. 
We have probably not reached the region of asymptotic concentration dependence of ( I ) .  
Rather we expect the curves for (1) and ep to merge asymptotically for low concentrations. 
Also included in the figure are data for an altemative definition of a correlation length 
of cooperative motion calculated by Butler and Harrowell 1161. 6 appears to increase more 
slowly with decreasing up-spin concentration than (1) and &,. 

2.5. Hard-square lattice-gas model [3] 

The hard-square lattice-gas model is a lattice gas with diffusion dynamics (Kawasaki 
dynamics) on a square lattice in two dimensions. The particles have an extended-had- 
core interaction which forbids the simultaneous occupation of nearest-neighbour sites on 
the lattice. As a consequence, particles behave like hard squares, which are allowed to 
touch one another at comers but not to overlap. A particle can jump to a nearest-neighbour 
site only if the nearest-neighbour sites of the new site are vacant. Besides this kinetic 
contraint, the hard-core interaction also causes an order-disorder phase transition, which 
occurs at the critical particle concentration c' = 0.3677. For concentrations higher than c" 
one of the two sublattices is preferentially occupied. The model has no blocking transition 
below the maximum concentration cm = 1/2. 

We call a particle 'blocked' if it cannot jump in any of the four directions, and 'mobile' 
otherwise. For a blocked particle to become mobile a sequence of jumps of other particles 
has to take place first (cf figure 1 for the spin model). The cooperativity length 1 of a particle 
in a certain lattice coflfiguration is defined as the minimum distance up to which particles 
are involved in such a sequence. A particle can be blocked only by particles on sites of 
the same sublattice, since the nearest-neighbour sites around a particle, which belong to the 
other sublattice, are always empty. Therefore, only particles on the same sublattice need be 
considered in a sequence of jumps. For this reason we measure the distance up to which 
such a sequence extends by the numbers of neighbour shells on one sublattice. 

The distribution PI  of cooperativity lengths and the average cooperativity length (1) were 
calculated for a selection of lattice-gas configurations, which were prepared by computer 
simulation. To prepare a configuration we start with a lattice of maximum concentration 
(c- = 1/2) and let the system equilibrate for a certain length of time, typically 4000 Monte 
Carlo steps per site (MCS). For the equilibration we use Glauber dynamics, whereby particles 
are randomly condensed on and evaporated from the sites of the lattice according to a given 
activity z. This procedure is necessary because it is impossible to obtain configurations 
with a density higher than 0.3641 by placing particles randomly on an empty lattice [3,201. 
For the calculation of the cooperativity length a computer algorithm was developed which 
is not reproduced here. For every configuration prepared by the equilibration process this 
algorithm is run to determine the cooperativity length of every panicle. 

The results for p~ for lattice size 128 x 128 and for various concentrations are shown 
in figure I. The length dependence of p ,  resembles the behaviour of p~ for the two-spin 
facilitated kinetic king model. For concentrations higher than c * 0.38, p ,  exhibits a 
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2 4 6 
(1.2~) In(l) 

Figure 7. Dishibution of cwperativity lenguls pi for the hard-square lattice-gaJ. Concenvations 
(from above) c It: 0.378. 0.389.0.397, 0.404 and 0.411 (lattice size 128 x 128). 

broad maximum near the average cooperativity length. This maximum can be explained by 
the existence of critical droplets in a growth process for vacancy clusters on the majority 
sublattice 1141, using similar ideas as for the two-spin facilitated kinetic king model. 

The concentration dependence of the average cooperativity length is shown in figure 8, 
where 2(I)  + 1 is plotted semi-logarithmically Venus I/ch. ch  = 1 - 2c is the hole 
concentration on the majority sublattice in the ordered phase well above c*; 2(I)  + 1 
rather than ( I )  is plotted for comparison with the percolation length 60,s [14], since the 
Ith neighbour shell is contained in a square of width 2 + I. (All lengths are in units of the 
lattice constant of a sublattice.) According to figure 8, for high particle concentrations the 
two lengths 2(I) + 1 and e0.5 become identical, with an exponential dependence on the hole 
concentration proportional to exp(b/ch) (b > 0 is a constant). However, as for the other 
models, we have not reached the asymptotic behaviour for c -+ 0.5, which, according to 
FrobBse [I41 does not start below c it: 0.475. Frobose’s results indicate that the asymptotic 
dependence of the characteristic lengths on ljch may be more rapid than exponential. 

3. A sum formula for the autocorrelation function 

It is a central idea of the theory of dynamic critical phenomena to relate a characteristic 
relaxation time to the conelation length of order-parameter fluctuations. If a similar relation 
between the characteristic length and time exists for our models, the only candidate for 
the characteristic length is the average cooperativity length (1). or one of its altematives. 
Comparing the average cooperativity length in our models with the correlation length of 
critical fluctuations, one notices an important difference: (1) is not the correlation length 
for the space-dependent fluctuations of some measurable quantity, but needs to be extracted 
from the puzzle of cooperative spin or particle dynamics. We found that the individual 
cooperativity length 1 is given by the length of a directed path of down spins for the NE 
model. For the two-spin facilitated kinetic king model and the hard-square lattice gas I 
must be determined by means of a cellular automaton, which derives f” the kinetic rule, 
or by a related algorithm. 
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Fire 8. Concentration dependence of the percolalion length $0.5 (U) and of 2(1) + I (0) for 
the hardsquare lattice-gas (data for b.5 from [14]). Lattice size I28  x 128 (ch = 1 - 2c). 

Adam and Gibbs [l] had assumed the size of a cooperatively rearranging region to 
be inversely proportional to the configurational entropy per molecule. We note that an 
analogous relation between the average cooperativity length and the entropy of the models 
considered above does nor exist. In fact, the cooperativity length of the models is not related 
in any simple way to their entropy. For the models with a sharp blocking transition the 
entropy is continuous where the cooperativity length diverges. For the two-spin facilitated 
kinetic king model (I) diverges for c -+ 0 with an essential singularity (equation 2.13). 
whereas the inverse of the entropy per spin diverges only as [c(l - lnc)l-'. A similar 
difference exists for the hard-square lattice gas. The assumption of inverse proportionality 
between the size of the cooperatively rearranging regions and the configurational entropy is 
a crucial point in the derivation of the Adam-Gibbs relation 

( 5 )  K exp(a/S,) (a > 0, constant) (3.1) 

between the average relaxation rate ( 5 )  and the molar configurational entropy. Far OUT 
models, therefore, the Adam-Gibbs formula (3.1) Seems to have no justification in terms 
of cooperativity. Nevertheless, Fredrickson [21, 221 found the formula to hold with good 
accuracy in a wide range for the two-spin facilitated kinetic Ising model. There is no 
consistent explanation of this agreement 

Here we leave the path of Adam and Gibbs and search for a direct relation between the 
distribution of cooperativity lengths and the dynamic properties of the models. We propose 
an expression for the autocorrelation function in terms of relaxation rates yl associated with 
cooperativity lengths 1. From the autocorrelation function the average relaxation time can 
be calculated. Our search was stimulated by figure 2 of [91 for the hierarchically constrained 
kinetic Ising chain, which shows that the autocorrelation function for the infinite chain can 
be obtained as the envelope function of the autocorrelation functions for finite chains with 
blocking boundary. A mathematical expression of similar type was proposed by Palmer, 
Stein, Abraham and Anderson [U], who ascribed the origin of the Kohlrausch-Williams- 
Watts stretched exponential form exp[-(t/r)@] of relaxation functions for glassy materials 
to the hierarchical coupling of a series of relaxation processes. 
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F@ro 9. Monte Carlo data for $ L , b ( ~ ) .  L = 3.4 and 5 and for Ihe autocorrelation function of 
the infinite system (undermost curve) for the NE model. The horimntal lines mark the asymptotic 
vdues +L.b(m). Concenmtim c = 0.50. 

3.1. Blocking boundary conditions and cooperativity length 
To decompose the autocorrelation function for the infinite system into contributions from 
different cooperativity lengths, it is useful to consider finite systems with blocking boundary. 
We formulate the case of King models with single-spin Rip (Glauber) dynamics. An 
analogous formulation applies to the case of lattice-gas models with diffusion (Kawasaki) 
dynamics. Let 

@L%) = (U(t)U(O))L,b/(4C(1 - c,) (3.2) 

denote the normalized autocorrelation function for the spin at the origin if the spins on the 
Lth neighbour shell are fixed in their initial directions. Under this condition only spins up 
to the (L - 1)th neighbour shell can Rip, provided that the kinetic rule is obeyed. Therefore, 
the spin at the origin is permanently blocked unless its cooperativity length is not larger 
than L - 1. Since the probability that the spin at the origin is not permanently blocked is 
given by the total decay 1 - @ L . b ( ~ )  of the autocorrelation function, the equation 

(3.3) 

follows. Taking the difference between L and L + I we obtain 

@L.b(oo) - qP+I.b(m) = p‘ for L >, 1 (3.4) 

1 - @‘.b(co) = PO. 

and 

(3.5) 

With these relations we have expressed the probability for cooperativity length L via 
the difference between the infinite-time limits of the autocorrelation function for blocking 
boundary at L and L + 1. The relation is illustrated in figure 9. Here and in the following 
the unit of time is defined as the inverse of a spin-flip attempt frequency, so that the flip 
rate of Rippable up and down spins is given by (1 - c)  and c,  respectively. 
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3.2. Sum formula 

We propose an approximate sum formula which expresses the normalized spin- 
autocorrelation function g(r) of the infinite system by a sum of exponentials. We arrive at 
this formula in the following way. 

Since g(t)  is the limit of the autocorrelation functions gL.b(t) of finite systems with 
blocking boundary conditions for L CO, it can be expressed as a sum over the differences 
of the latter. The expression mads 

where we put g0vb(f) = 1. We approximate each difference in the simplest possible way as 

(3.7) 

with a single L-dependent relaxation rate yr. We choose y~ to be the smallest relaxation 
rate occurring in the expression for gLtl.b(f) - gL+1~6(w), i. e. the rate which determines 
the asymptotic decay of the function gL+l*b(t) towards its inhinitethe i i t :  

gL.*(r) - gLtl*b(t)  = p L ( l  -e-%') 

(CO) - exp(-yLf) for f -+ CO. (3.8) g L t l , h ( f )  - gLt1.b 

Inserting (3.7) in the sum (3.6) yields a sum formula for an approximation T(t) of +(I): 

(3.9) 

(For ergodic systems we have Pm = 1 and @(CO) = 0.) 
Note that (3.7) is in accord with (3.4). However, the approximation (3.7) is fairly crude, 

since the time dependence of gL.b(t) -gL+l .b( f )  is generally non-exponential too. It can be 
shown that this difference grows at least like rLt' for short times, in contrast to the linear 
growth with f which follows from (3.7). Nevertheless, with this approximation formula 
(3.9) reproduces characteristic features of the autocorrelation function g(f), as is shown 
now for an example of the NE model. We mention that formula (3.9) was applied already 
to the special case of the hierarchically constrained kinetic king chain by Eisinger [SI. 

3.3. Test of approximation formula for fhe NE model 

We tested the accuracy of formula (3.9) for the NE model at concentration c = 0.5. 
The distribution p~ of cooperativity lengths was calculated by computer simulation (see 
section 1.3). To evaluate the relaxation rates y~ we also used simulations. Following 
the definition (3.8) we have to simulate gL.b ( f )  for different values of L. Then y~ 
should be obtained by measuring the slope of In (@L+l.b(t) - q 5 L + ' . b ( ~ ) )  for long times. 
Unfortunately, the relaxation rates y~ could not be determined with sufficient accuracy by 
this procedure. Instead, we derived the relaxation rate y~ from the asymptotic decay of a 
modified autocorrelation function gL(t), in which the contribution of the smallest relaxation 
rate is more pronounced gL(f) is defined as the autocorrelation function of a spin with 
cooperativity length L which is at the centre of a system of size L + 1 with blocking 
boundary. Here we assume that the smallest relaxation rate occurring in g ~ ( t )  and @Lt'.b(t) 
is the same, so that $L(t )  also decays with ffilaxation rate YL fort + CQ. This assumption 



7338 

is very plausible since a spin contributing to @ L ( t )  also contributes to @'+'-*(t), and L is 
the longest possible cooperativity length in a system of size L + 1 with blocking boundary. 
figurc IO shows a Kohlrausch plot of the Monte Carlo results for &(t) for lengths L = 1 
to L = 12 at up-spin concentration c = 0.5. The asymptotic exponential behaviour yields a 
straight line with unity slope. The relaxation rate y~ can be obtained from the intersection 
point of this line with the ordinate axis (figure 11). Because of the slowing down of the 
relaxation with increasing length, the procedure of obtaining the relaxation rates y~ from 
the asymptotic behaviour of the autocomelation function &(t) requires a huge amount of 
computation time for large lengths L. Therefore for lengths L z 12 we extrapolated the 
power-law behaviour of y', which is observed for L ranging from 6 to 12, to larger L 
values (dashed line in figure 11). The relaxation rates obtained by extrapolation affect &t) 
appreciably only for long times t >> IC?. 
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Figure 10. Kohlrausch plot of lhe Monte Carlo results for @ ~ ( t ) .  for L from 1 to 12 (from the 
left) for lhe NE model. Concenmion c = 050. 

Figure 12 shows a Kohlrausch plot of the result for the sum formula (3.9) in comparison 
with the Monte Carlo curve for @ ( I )  at the same up-spin concentration c = 0.5. Although 
the agreement is not quantitative, the sum formula reproduces the main characteristics of 
4(t)  at short and intermediate times remarkably well. The slope in the intermediate time 
region (5 c f < 500). which corresponds to a fractional exponent Bm = 0.36, is reproduced 
rather accurately. We note that for long times the exponential decrease of p~ together with 
a power-law dependence yr. o( L-a of the relaxation rate for large L yields, by the method 
of steepest descent, a Kohlraurct+Williams-Watts-Iike dependence of &t) with fractional 
exponent p = ( I  +a)-'. p = 0.36 is obtained for LY = 1.78, which is close to the average 
slope (= 1.73) of y~ in the log-log plot of figure 11. 

The result of the sum formula for the asymptotic long-time regime must remain open, 
since the relaxation rates y~ for large L (L  >> 12) could not be determined. The Kohlrausch 
plot of the available Monte Carlo data in figure 11 shows that the effective fractional 
exponent increases to about 0.5 at the longest times. but an exponential asymptotic decay 
of @(t) cannot be ruled out. 

Monte Carlo data of @ ( t )  for other concentrations look qualitatively similar to the result 
for c = 0.5. However, the fractional exponent pm, which characterizes the time dependence 
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Sigure 11. Relaxation rates yr. which are obtained from the asymptotic exponential decay of 
@'(I) (see figure IO). The dashed line extrapolam h e  power-law fit yr. a L-'.n obtained for 
6 <  L < 12. 

100 lo' 102 103 
01 ' 

10" 
time [MCS] 

Figure 12. Kohlrauseh plot of the result fw the sum formula (upper curve) and the Monte 
Carlo curve (lower curve) for the autoconelation function @ ( I )  for the NE model. Concentration 
c = 0.50. 

of @ ( t )  in the intermediate time regime, is found to vary. For example, for c = 0.44 we 
obtain & = 0.30. We anticipate from this result that the form of the L-dependence of the 
relaxation rate y ~ ,  i.e. its approximate power-law dependence, also varies with c. 

4. Conclusion 

Regarding the relevance of the cooperativity length to measurable physical quantities, its 
most obvious consequence is the existence of size effects. In systems of linear dimension 
smaller than the average cooperativity length, most of the spins (or particles) are permanently 
blocked and no longer contribute to the response of the system to external perturbations. 
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Similar effects are to be expected for real undercooled liquids in confined geometries if 
the average cooperativity length of the liquid becomes comparable to or larger than the 
confining length. The experimental obsewation of such a size effect would yield the 
average cooperativity length most directly. Systems of interest are glass-forming liquids 
filled in porous inorganic crystals or glasses [24], or the amorphous regions of semicrystalline 
polymers [25]. The glass transition of such confined liquids could be probed by a variety 
of experimental techniques, the most common being the differential scanning calorimetry. 
The suppression of cooperative motion due to confinement should lead to a broadening 
and shift to lower temperature of the glass transition. So far only a broadening has been 
observed, but not a shift to lower temperatures [24,25]. The difficulty lies in the smallness 
of the cooperativity length of glass-forming liquids, which has been estimated to be of the 
order of 20 8, [26]. In systems of comparable linear dimensions the size effea due to the 
suppression of cooperative motion may be masked by effects of liquid-wall interactions. 

As a second consequence of the concept of a cooperativity length, we explored a possible 
connection between the autocorrelation function and the distribution of cooperativity lengths, 
assuming a relation between cooperativity length and relaxation rate. Introducing blocking 
boundary conditions for finite systems, we arrived at a sum formula for the normalized 
autocorrelation function of the infinite system, which contains the probabilities p~ of 
cooperativity lengths L and the associated relaxation rates y~ as parameters. The relaxation 
rate y~ is chosen to be the smallest relaxation rate of a system of size L with blocking 
boundary. This choice of the relaxation rate is not unique since the autocorrelation function 
for spins with a particulai value of the cooperativity length is also of stretched exponential 
form. However, for our choice the sum formula was found to yield good overall agreement 
with the Monte Carlo data for the autocorrelation function of the NE model for up-spin 
concentration c = 0.5. In particular, the effective fractional exponent Bm = 0.36 for the 
intermediate time region is well reproduced. It would be of interest to test the validity of 
our sum formula for other models and concenhations as well. 
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